Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the rank-math domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/www-data/www/wordpress/wp-includes/functions.php on line 6121

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the rank-math domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/www-data/www/wordpress/wp-includes/functions.php on line 6121
企业必须了解七个常见的数据质量误区 - DataModeling Help

企业必须了解七个常见的数据质量误区

企业只有在了解数据质量误区之后,才能很好的进行数据治理,了解这常见的七个数据质量误区能让企业有更好的发展。

数据质量.jpg

所谓“无规矩不成方圆”,因历史原因企业在发展过程中已经形成了系统林立的情况,汇集到数据平台的数据都各具特色,缺乏标准、规范、治理的数据已经失去了使用的价值。为了规范数据处理过程,凸显数据业务价值,需对数据平台的数据进行综合管理,构建标准化、流程化、自动化、一体化的数据治理体系,确保数据架构规划合理、数据加工条理清晰、数据处理可管控、数据知识可传承。有效的数据治理可以确保企业数据全面一致可信,从而全面释放数据资产的价值。
为了解决当今困扰组织的数据质量挑战,企业必须了解最普遍的数据质量误区。以下就是七个最常见的数据质量流言背后的事实真相:
误区一:数据治理和数据质量是两个不同的举措。
事实:没有数据质量的数据治理是不可能的。

数据治理确保涉及数据管理的人员,流程和技术也建立了对信息的信任,以生成对业务有利的可靠见解。没有数据质量,这是不可能做到的。

当数据在数据供应链中传播时,将面临新的流程,使用和转换,从而影响其完整性。通过对数据质量进行评分和监控,并在数据治理计划中实施数据完整性控制,企业可以通过防止可能对审计,风险和合规性报告,管理演示和一般决策产生不利影响的下游数据问题建立数据信任。

误区二:解决数据质量问题是非常昂贵且费时的。
事实:先进的数据质量检查和集成的机器学习功能使公司能够自动监视和改善企业数据信任度。

机器学习和分析功能不断监视数据完整性,自动执行数据质量任务,这些任务通常需要大量人员来完成,并确保数据没有错误。当业务用户知道数据是准确的时,他们就会信任该信息以帮助做出更好的业务决策。

误区三:知道数据的质量是高还是低是唯一重要的事情。
事实:数据质量是一个不断变化的目标,将其简单地分类为低或高将不会降低质量。

无论数据是有点不准确还是非常不准确。 对于那些使用数据的人来说,它都是无用的。但是,有时数据可能是准确的,那么就并不完全有用。 例如,如果一个组织拥有6年的准确数据,则业务用户可能会认为该信息不可靠,因为它不及时,尽管它可能会以其他方式对不同部门有用。相对于实际知道数据的高低,取决于消费者打算如何使用它,能够表征,分类和提供数据沿袭对数据的用户而言可能更为重要。

误区四:第三方对自己的数据质量负全部责任。
事实:无论是否在内部创建,验证和维护所有数据源的数据质量至关重要。

第三方数据推动了与外部资源交换数据的机会,以发现见解并改善客户体验。没有一个明确的方法可以解决一个组织如何影响合作伙伴组织处理其数据质量的问题。因此,当组织从各种外部来源获取信息时,它们必须通过在进入公司数据供应链时进行完整性检查来确保数据的质量。在接收到外部信息时(在每个系统和过程中)对它们的准确性和完整性进行定期检查,有助于在数据进入企业后立即对其进行监视,以确保始终保持从源到系统的质量。

误区五:员工很容易理解为什么数据质量很重要。
事实:在复杂的数据环境中,质量流程通常被“孤立”,几乎看不到如何配置特定数据集或事务的完整过程。此外,这些孤立的数据可能以不同的格式存在于具有不同信息的不同部门中,这使事情变得更加复杂。这些现有的孤岛阻碍了员工完全了解需要数据质量的影响的能力。

如今,数据的速度和规模以及所使用的大量数据平台和应用程序令人震惊。结果,对数据质量的风险稳步增加。公司必须建立适当的信息质量监督,以在卷积数据环境中进行导航更改。

误区六:数据质量和数据完整性是不同的概念。
事实:数据质量和数据完整性是几乎可以互换使用的术语。

从历史上看,术语数据完整性是指数据的有效性和数据质量,它表示数据的完整性,准确性和及时性。 但是,要了解数据的有效性,企业必须意识到其完整性,准确性和及时性。

数据完整性还意味着整个组织内的数据移动。在整个数据供应链过程中确保完整性,并与数据质量结合在一起。因此,数据完整性或数据质量都可以描述数据的有效性,完整性,准确性,及时性等。这两个术语在其任务中紧密相连:提供可信赖的数据。

误区七:实施数据质量是一项技术计划。
事实:组织中的每个人都有责任尽自己的职责来解决数据质量。

随着组织中越来越多的人需要高质量的数据来有效地完成工作,每个人都在确定如何最好地验证信息方面承担着风险。在当今数据驱动的世界和繁重的IT团队中,企业不能再假定IT部门始终了解需要验证质量的业务要求,也不能要求他们依靠数据集成工具来解决质量问题。展望未来,业务用户需要开始执行自己的质量程序,因为他们知道自己所遵循的要求,因此更多地参与实际实施质量检查可以简化整个过程。

企业了解最普遍的数据质量误区之后,就可以进行下一步计划——提升产品质量。不知道您是否知道很多企业拥有了MES、ERP、SPC等业务系统,获得了大量的数据。然而在跨工厂、跨系统的异构数据中,面临着如何找到生产各个环节的规律和异常,如何获得优化见解的困难,马上告诉您如何解决这个困难。

通过数据分析找到优化产品质量的关键因素,产品质量分析及预测方案以企业级视角了解所有质量数据,提高数据分析效率,快速定位产品质量缺陷根因。之后快捷分析质量高风险缺陷及趋势,主动发现缺陷规律和质量异常,预测质量。